

Detection of Distorted IR-UWB Pulses in Low SNR NLOS Scenarios

2014 IEEE International Conference on Ultra-WideBand (ICUWB) Paris, France

Thorsten Wehs, Gerd von Cölln, Carsten Koch, Tilman Leune

Hochschule Emden/Leer, Germany University of Applied Sciences, Department of Electronics and Informatics Email: {thorsten.wehs.gerd.von.coelin, carsten.koch, timan.leune}@hs-emden-leer.de

1. September 2014

《曰》 《圖》 《臣》 《臣》 三臣

200

Outline Motivation Preliminary thought(s Aim of the algorithm

Outline

Outline

- Motivation and preliminary thought(s)
- Proposed algorithm
- Experiment
- Performance
- Summary and outlook

DQ P

2/15

1

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline Motivation Preliminary thought(s) Aim of the algorithm

Motivation

- indoor localization next big thing in navigation
- IR-UWB enables high accuracy ToF (time-of-flight) ranging
- bottlenecks are NLOS (non-line-of-sight) effects (cf. [5])
- ensuring sufficient LOS (line-of-sight) links often not feasible
- frequent and critical NLOS case: penetration of material (typically walls)
 - distortion of pulse shape (cf. [4])
 - attenuation of signal energy
 - bias in ranging (cf. [2, 1])

Figure: exemplary indoor localization scenario

B b

Outline Motivation Preliminary thought(s) Aim of the algorithm

Preliminary thought(s)

Pulse detection in frequency domain

- relative/different shift of containing frequencies
- reduced correlation coefficient with pulse template in time domain
- amplitude spectrum less affected than phase spectrum
- idea: correlation of amplitude spectrums often outperforms correlation in time domain

Distance candidates in ranging

- strong attenuation results in low SNR
- distinct determination of first received pulse not possible (cf. [3])
- detect serveral sample values with high probability to be an UWB pulse

Outline Motivation Preliminary thought(s) Aim of the algorithm

Aim of the algorithm

Aim of the proposed algorithm:

(1) reduce the number of pulse candidates for a defined detection quality or

(2) improve the detection quality with a defined number of pulse candidates

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

F|-correlation

Pulse candidate detection on |F|-correlation

Algorithm details

- core operation: short-time Fourier transform (STFT) on received signal
- STFT with different window sizes (reducing leakage effects)
 - e. g. $n_r = 3$: {1, 1.5, 1.7} · pulse width
- amplitude spectrograms S_{n_r} : $S_{n_r}[i,k] = |X[i,k]|^2$
- $\begin{array}{l} \bullet \quad \text{column-wise Pearson correlation} \\ \text{with spectrum of pulse template:} \\ \rho_{fS}[i] = \\ \\ \texttt{pcc}(\boldsymbol{C_i}, \boldsymbol{a_s}) \begin{cases} > 0 \quad \texttt{pcc}(\boldsymbol{C_i}, \boldsymbol{a_s}) \\ < 0 \quad 0 \end{cases} \end{array}$

F|-correlation

Pulse candidate detection on |F|-correlation

Algorithm details

matrix of correlation values:

$$\begin{split} \rho_{fM}[i, u] = & \\ \begin{bmatrix} \rho_{fS_1}[1] & \rho_{fS_1}[2] & \dots & \rho_{fS_1}[n_s] \\ \rho_{fS_2}[1] & \rho_{fS_2}[2] & \dots & \rho_{fS_2}[n_s] \\ \vdots & \vdots & \vdots \\ \rho_{fS_nr}[1] & \rho_{fS_nr}[2] & \dots & \rho_{fS_nr}[n_s] \end{split}$$

- ▶ column-wise average of coefficients: ρ_{fA}[i] = R_i
- ► detection of local maxima: $Z[i] = \\
 sgn[\rho_{fA}']' \begin{cases} < 0 \quad \text{local maximum} \\ = 0 \quad \text{other fct. value} \\
 > 0 \quad \text{local minimum} \end{cases}$

Material parameters Pulse distortion Comparison of correlation coefficients Exemplary algorithm results

Dielectric material parameters

Exemplary material: brick

- dielectric material parameters
- bandwidth from 2 GHz to 11 GHz
- based on Jing et al. [4]
- frequency dependent
- non-linear impact on propagation
 - amplitude constant
 - phase constant

Figure: dielectric parameters material brick

つへで 8/15

Material parameters Pulse distortion Comparison of correlation coefficients Exemplary algorithm results

Pulse distortion with wall of brick

- distortion of pulse in time domain and amplitude spectrum
- ▶ wall of brick with thickness of 5 cm

1

Material parameters Pulse distortion Comparison of correlation coefficients Exemplary algorithm results

Comparison of correlation coefficients over wall thickness

Material parameters Pulse distortion Comparison of correlation coefficients Exemplary algorithm results

Results from proposed algorithm (exemplary)

- ▶ 5 cm wall of brick
- ▶ ground truth of distorted pulse: t = −25.02 ns
- ▶ SNR: -11.67 dB
- red marker: candidates
 |F|-correlation
- blue marker: candidates t-correlation (matched filter)

Performance analysis (SNR)

Performance analysis (SNR)

Performance analysis

- quality criterion: deviation of closest candidate to ground truth
- ► SNR range: -34 dB to -6 dB
- cumulative improvement in this test case (brick, 5 cm, SNR range) is 37 %
- means: with same number of candidates, detection accuracy increases by 37 % (average)

Summary and outlook Literature Performance analysis (wall thickness)

Summary and outlook

The aim of the paper was to depict a new approach for the detection of distorted and low SNR pulses in frequency domain to improve indoor localization.

Summary

- UWB pulses often strongly distorted and attenuated in indoor environments
- distortion reduces correlation in time domain
- correlation of amplitude spectrums instead can improve this
- \blacktriangleright experiment shows improvement up to $37\,\%$

Outlook

- analyse impact of angle of incidence on the wall
- further evaluation of the approach
 - other pulse shapes
 - different materials
- additional quality criteria
- runtime analysis

Summary and outlook Literature Performance analysis (wall thickness)

Literature

- Chen Chen, Ding Hong, Huang Xiaotao, Li Xiangyang, and Yuan Jibing. Through-wall localization with UWB sensor network. In Ultra-Wideband (ICUWB), 2012 IEEE International Conference on, pages 284-287, 2012.
- [2] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M.Z Win. Ranging With Ultrawide Bandwidth Signals in Multipath Environments. *Proceedings of the IEEE*, 97(2):404-426, 2009.
- [3] Shen Guowei, R. Zetik, Yan Honghui, O. Hirsch, and R.S Thoma. Time of arrival estimation for range-based localization in UWB sensor networks. In Ultra-Wideband (ICUWB), 2010 IEEE International Conference on, volume 2, pages 1-4, 2010.
- Meng Jing, Yu Zhang Qin, and Tong Zhang Nai. Impact of IR-UWB waveform distortion on NLOS localization system. In Ultra-Wideband, 2009. ICUWB 2009. IEEE International Conference on, pages 123-128, 2009.
- [5] Maranò, S., W.M Gifford, H. Wymeersch, and M.Z Win. NLOS identification and mitigation for localization based on UWB experimental data. IEEE Journal on Selected Areas in Communications, 28(7), 2010.

Performance analysis (wall thickness)

- blue: general ratio of correlation coefficients t-correlation $_{thickness}$ F-correlation +hickness
- improvement follows course of general ratio
- different STFT windows results in additional improvement

T. Wehs

