Optimization of Wireless Locating in Complex Environments by Placement of Anchor Nodes With Evolutionary Algorithms

18th IEEE International Conference on Emerging Technologies & Factory Automation
Cagliari, Italy

Tilman Leune, Thorsten Wehs, Manuel Janssen, Carsten Koch, Gerd von Cölln
Hochschule Emden/Leer, Germany
University of Applied Sciences, Department of Informatics and Electronics
Email: {koch, coelln}@technik-emden.de

10. September 2013
Task: Radio locating in complex environments

Goal: Tracking of mobile entities on ship’s decks
- Personell
- Buoys, containers, anchor weights

Toolkit: Wireless sensor network
1. Fixed position anchors nodes
2. Self-locating mobile sensor nodes
3. Gateway node to plant network
Challenge: Keep up the precision

Locating with multilateration

1. Distances measurements to known fixed anchor points
2. Estimation of own position in space

Several sources of systematic errors

- Measurement noise
- Dilution of Precision (DOP)
- Non line of sight measurements because of obstacles (NLOS)
Solution: Evolutionary Algorithm

Quality of solutions is easy to assess
- Geometry: Low DOP-Values are good
- Visibility: At least four anchors required, more are better
- Cost: The fewer anchors used, the better

Good solutions are difficult to generate ad hoc
- Let the computer search!
- Employ biological principle of evolutionary optimization
Results of optimization over 50 Generations

(a) Generation 1 (b) Generation 5 (c) Generation 47
Optimization of Wireless Locating in Complex Environments by Placement of Anchor Nodes With Evolutionary Algorithms

18th IEEE International Conference on Emerging Technologies & Factory Automation
Cagliari, Italy

Tilman Leune, Thorsten Wehs, Manuel Janssen, Carsten Koch, Gerd von Cölln

Hochschule Emden/Leer, Germany
University of Applied Sciences, Department of Informatics and Electronics
Email: {koch, coelln}@technik-emden.de

10. September 2013